Structurally altered peptides reveal an important role for N-terminal heptad repeat binding and stability in the inhibitory action of HIV-1 peptide DP178.
نویسندگان
چکیده
Human immunodeficiency virus 1 gp41 folds into a six-helix bundle whereby three C-terminal heptad repeat regions pack in an anti-parallel manner against the coiled-coil formed by three N-terminal heptad repeats (NHR). Peptides that inhibit bundle formation contributed significantly to the understanding of the entry mechanism of the virus. DP178, which partially overlaps C-terminal heptad repeats, prevents bundle formation through an undefined mechanism; additionally it has been suggested to bind other ENV regions and arrest fusion in an unknown manner. We used two structurally altered DP178 peptides; in each, two sequential amino acids were substituted into their d configuration, d-SQ in the hydrophilic N-terminal region and d-LW in the hydrophobic C-terminal. Importantly, we generated an elongated NHR peptide, N54, obtaining the full N-helix docking site for DP178. Interestingly, d-LW retained wild type fusion inhibitory activity, whereas d-SQ exhibited significantly reduced activity. In correlation with the inhibitory data, CD spectroscopy and fluorescence studies revealed that all the DP178 peptides interact with N54, albeit with different stabilities of the bundles. We conclude that strong binding of DP178 N-terminal region to the endogenous NHR, without significant contribution of the C-terminal sequence of DP178 to core formation, is vital for DP178 inhibition. The finding that d-amino acid incorporation in the C terminus did not affect activity or membrane binding as revealed by surface plasmon resonance correlates with an additional membrane binding site, or membrane anchoring role, for the C terminus, which works synergistically with the N terminus to inhibit fusion.
منابع مشابه
Designing a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations
The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In th...
متن کاملMembrane-Anchored HIV-1 N-Heptad Repeat Peptides Are Highly Potent Cell Fusion Inhibitors via an Altered Mode of Action
Peptide inhibitors derived from HIV-gp41 envelope protein play a pivotal role in deciphering the molecular mechanism of HIV-cell fusion. According to accepted models, N-heptad repeat (NHR) peptides can bind two targets in an intermediate fusion conformation, thereby inhibiting progression of the fusion process. In both cases the orientation towards the endogenous intermediate conformation shoul...
متن کاملApplication of FITC for detecting the binding of antiangiogenic peptide to HUVECs
Angiogenesis is the generation of new blood vessels from the existing vasculature. The angiogenic programme requires the degradation of the basement membrane, endothelial cell migration and invasion of the extracellular matrix, with endothelial cell proliferation and capillary lumen formation before maturation and stabilization of the new vasculature. Angiogenesis is dependent on a delicate equ...
متن کاملThe Conserved Residue Arg46 in the N-Terminal Heptad Repeat Domain of HIV-1 gp41 Is Critical for Viral Fusion and Entry
During the process of HIV-1 fusion with the target cell, the N-terminal heptad repeat (NHR) of gp41 interacts with the C-terminal heptad repeat (CHR) to form fusogenic six-helix bundle (6-HB) core. We previously identified a crucial residue for 6-HB formation and virus entry--Lys63 (K63) in the C-terminal region of NHR (aa 54-70), which forms a hydrophobic cavity. It can form an important salt ...
متن کاملShort constrained peptides that inhibit HIV-1 entry.
Peptides corresponding to the C-terminal heptad repeat of HIV-1 gp41 (C-peptides) are potent inhibitors of HIV-1 entry into cells. Their mechanism of inhibition involves binding in a helical conformation to the central coiled coil of HIV-1 gp41 in a dominant-negative manner. Short C-peptides, however, have low binding affinity for gp41 and poor inhibitory activity, which creates an obstacle to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 14 شماره
صفحات -
تاریخ انتشار 2006